BlackScholes(call_put_flag, S, X, T, r, v)
Last updated May 09, 2003
Version: 1 | Requires: CF5 | Library: FinancialLib
Description:
Returns the value of call and put options using the Black-Scholes pricing formula. S is the current asset price, X is the exercise price, r is the risk-free interest rate, T is the time to maturity of the option in years, v is annualized volatility. This code requires the cumulative normal distribution function CND().
Return Values:
Returns a number.
Example:
<CFSET CallPutFlag = 'c'>
<CFSET S='49.25'>
<CFSET X='50.00'>
<CFSET T='0.1'>
<CFSET r='0.35'>
<CFSET v='0.30'>
<cfoutput>
#BlackScholes(CallPutFlag,S,X,T,r,v)#
</cfoutput>
Parameters:
Name | Description | Required |
---|---|---|
call_put_flag | The Call Put Flag. | Yes |
S | The current asset price. | Yes |
X | Exercise price. | Yes |
T | Time to maturity. | Yes |
r | Risk-free Interest rate. | Yes |
v | Annualized volatility. | Yes |
Full UDF Source:
/**
* Computes the theoretical price of an equity option.
*
* @param call_put_flag The Call Put Flag. (Required)
* @param S The current asset price. (Required)
* @param X Exercise price. (Required)
* @param T Time to maturity. (Required)
* @param r Risk-free Interest rate. (Required)
* @param v Annualized volatility. (Required)
* @return Returns a number.
* @author Alex (axs@arbornet.org)
* @version 1, May 9, 2003
*/
function BlackScholes (call_put_flag,S,X,T,r,v) {
var d1 = ( log(S / X) + (r + (v^2) / 2) * T ) / ( v * (T^0.5) );
var d2 = d1 - v * (T^0.5);
if (call_put_flag eq 'c')
return S * CND(d1) - X * exp( -r * T ) * CND(d2);
else
return X * exp( -r * T ) * CND(-d2) - S * CND(-d1);
}
Search CFLib.org
Latest Additions
Raymond Camden added
QueryDeleteRows
November 04, 2017
Leigh added
nullPad
May 11, 2016
Raymond Camden added
stripHTML
May 10, 2016
Kevin Cotton added
date2ExcelDate
May 05, 2016
Raymond Camden added
CapFirst
April 25, 2016